

Vocabulary

continuous discrete

equivalent non-linear functions

parent graph slope-intercept form

Graph linear equations in slope-intercept form.

Write a linear equation for a given graph.

Write a linear equation in slope-intercept form when given information about the line.

Convert different forms of linear equations to slope-intercept form.

Graph linear equations that are not written in slope-intercept form.

Graph a linear inequality on a coordinate plane.

Recognize linear, quadratic, exponential and inverse variation functions.

Lesson 3.1 ~ Graphing Using Slope-Intercept Form

Draw a coordinate plane for each problem and graph the given equation. Clearly mark three points on the line.

1.
$$y = 3x - 4$$

2.
$$y = \frac{2}{3}x + 3$$

3.
$$y = x - 1$$

4.
$$y = -2x$$

5.
$$x = 3$$

6.
$$y = 6 + \frac{4}{3}x$$

7. Create a linear equation that satisfies each condition. Graph your equations on a coordinate plane.

- **a.** Slope = 2 and a negative y-intercept
- **b.** Slope = 0 and a *y*-intercept of -3
- **c.** A negative slope and a positive *y*-intercept
- d. A positive slope and a y-intercept of 0

Lesson 3.2 ~ Writing Linear Equations for Graphs

Identify the slope and y-intercept of each graph and write the corresponding linear equation in slope-intercept form.

8.

Q

10.

- 11. At two different times during the summer, Leticia measured the height of a tomato plant she had planted in June. She measured it when she first planted it and then again 4 weeks later.
 - a. Find the slope-intercept equation that represents the height of Leticia's tomato plant based on the number of weeks since she planted it.
 - b. Use your equation to determine exactly how tall the tomato plant will be after 7 weeks.
 - c. Determine how many weeks have passed if the plant is 29 inches tall. Use mathematics to justify your answer.

Lesson 3.3 ~ Writing Linear Equations from Key Information

Write an equation in slope-intercept form when given key information about a line.

12. slope =
$$\frac{3}{4}$$
, y-intercept = 5

16. slope = 2, goes through the point
$$(2, 3)$$

18. slope =
$$-1$$
, goes through the point $(-3, 5)$

20. goes through the points
$$(1, 1)$$
 and $(5, 9)$

22. goes through the points
$$(-4, 8)$$
 and $(-3, 5)$

13. slope =
$$-5$$
, y -intercept = 1

15. slope =
$$\frac{2}{5}$$
, y-intercept = 0

17. slope =
$$\frac{1}{2}$$
, goes through the point (6, 1)

19. slope =
$$\frac{5}{2}$$
, goes through the point (-6, -10)

21. goes through the points
$$(-6, 0)$$
 and $(3, 3)$

23. goes through the points
$$(8, -4)$$
 and $(5, -4)$

- **24.** A furniture rental company rents large screen televisions. They charge an initial fee plus \$20 for each day the TV is rented. Steven rented a TV for 8 days and was charged \$225. Let x represent the number of days and y represent the total cost of the rental.
 - a. Identify the slope and one ordered pair from the information
 - **b.** Find the equation of the line that fits this information.
 - c. If another customer rents a TV for 17 days, how much should he expect to pay?
- 25. A canoe rental company on Deep Sea Lake rents canoes for a set fee plus an additional charge per hour. Marshall asked two different individuals how many hours they had rented their canoes for and how much it cost. One rented a canoe for 4 hours and paid \$32. Another person rented a canoe for 10 hours for \$56. Let x represent the length of time in hours and let y represent the total cost.
 - a. What is the linear equation that represents the data?
 - b. What number in the linear equation represents the amount of the set fee?
 - c. What is the real-world meaning of the slope in this equation?
 - d. How much will someone pay for a canoe rental from this company if he keeps the canoe for 6 hours? Show all work necessary to justify your answer.

convert each equation to slope-intercept form.

26. y = 4 + 2(x - 7)

27.
$$3x + 6y = 18$$

28.
$$y = \frac{1}{4}(x+4) - 3$$

29.
$$4x - 5y = 15$$

30.
$$-x + 3y = -12$$

31.
$$y-2=3(x+1)$$

Lesson 3.5 ~ More Graphing Linear Equations

Convert each equation to slope-intercept form and graph. Clearly mark at least three points on each line.

32.
$$-4x + 2y = -6$$

33.
$$y + 1 = 3(x - 2)$$

34.
$$y = \frac{3}{2}(x-4) + 2$$

35.
$$7x = -14$$

36.
$$x + 3y = 12$$

37.
$$y = 2(x-1) + 2$$

Determine if each point is on the given line. Show all work necessary to justify your answer.

38. Is the point
$$(-2, 1)$$
 on the line $4x - 3y = -11$?

39. Is the point (2, 5) on the line
$$y = 2(x - 1) + 3$$
?

40. Is the point (-6, 0) on the line
$$y + 4 = \frac{1}{2}(x + 4) + 3$$
?

Lesson 3.6 ~ Graphing Linear Inequalities in Two Variables

Graph each linear inequality.

41.
$$y < 2x - 4$$

42.
$$y \ge \frac{3}{4}x - 2$$

43.
$$y < -x + 1$$

44.
$$y > -\frac{1}{2}x$$

45.
$$y \ge -4$$

46.
$$2x + 3y < 9$$

Match each linear inequality with its graph.

47.
$$y \ge \frac{1}{2}x - 3$$

48.
$$y \le \frac{1}{2}x - 3$$

49.
$$y < \frac{1}{2}x - 3$$

50.
$$y > \frac{1}{2}x - 3$$

A.

В.

C

D.

Determine if each graph, table or equation is linear or non-linear. If it is non-linear, identify the type of graph (quadratic, exponential or inverse variation).

51

	X.	y
	-2	12
	-1	3
	0	0
ĺ	1	3
	2	12

52. $y = \frac{2}{3}x - 4$

53.

54.

55.

	y
-2	0
-]	2
0	4
1	6
2	8

56.

- **57.** Nicki deposits \$4,000 in a savings account. Each year the bank gives her 3% interest based on the current value of the account.
 - a. Create a table of values showing the value of her bank account after Years 1, 2 and 3.
 - b. Is this relationship linear or non-linear? Explain your reasoning.

Tic-Tac-Toe ~ Graphing Design

Lines are used in many types of artwork. Use a large sheet of graph paper to create a piece of artwork.

- **Step 1:** Draw a coordinate plane that includes all four quadrants.
- Step 2: Create a design using at least 15 different lines. Make sure over two-thirds of the lines are not vertical or horizontal.
- **Step 3:** Write the equations for each line on the back of your piece of artwork.
- **Step 4:** Color your artwork and sign the bottom right corner.