

Janine can use up to 150 one-inch blocks to build a solid, cube-shaped model. What are the dimensions of the possible models that she can

build? How many blocks would Janine use for each model? Explain.

Lesson 1-5Solve Equations Using Square Roots and Cube Roots

Go Online | PearsonRealize.com

I can...

solve equations involving squares or cubes.

Common Core Content Standards

8.EE.A.2

Mathematical Practices MP.2, MP.3, MP.6, MP.7, MP.8

How are the dimensions of a solid related to its volume?

1x1x1

Focus on math practices

Reasoning Janine wants to build a model using $\frac{1}{2}$ -inch cubes. How many $\frac{1}{2}$ -inch cubes would she use to build a solid, cube-shaped model with side lengths of 4 inches? Show your work.

MP.2

EXAMPLE 1

Solve Equations Involving Perfect Squares

Scan for Multimedia

Darius is restoring a square tabletop. He wants to finish the outside edges with a piece of decorative molding. What total length of molding will

Draw a diagram to represent the tabletop.

Use the formula $A = s^2$ to find each side length. To solve, take the square root of both sides of the equation.

$$A = s^{2}$$

$$25 = s^{2}$$

$$\sqrt{25} = \sqrt{s^{2}}$$
Because $5^{2} = 5 \times 5 = 25$
and $(-5)^{2} = -5 \times -5 = 25$,
 $s = 5$ and $s = -5$, or $s = \pm 5$.

Since length is positive, each side length of the tabletop is 5 feet. Darius needs 20 feet of decorative molding.

Generalize In general, an equation of the form $x^2 = p$, where p is a positive rational number, has two solutions, $x = \pm \sqrt{p}$. MP.8

Each side of the square measures

meters.

Convince Me! Why are there two possible solutions to the equation

SOLUTION Whe! Why are unsofthe solutions is valid in this situation. $s^2 = 100$? Explain why only one of the solutions is valid in this situation.

Go Online | PearsonRealize.com

EXAMPLE 2

Solve Equations Involving Perfect Cubes

Kyle has a large, cube-shaped terrarium for his iguana. He wants to cover the opening with a square screen. What are the dimensions, s, for the screen?

= -343.

$$V = s^3$$

$$343 = s^3$$

The value of s is not $\pm \sqrt[3]{343}$ because $(-7)^3 = -7 \times -7 \times -7$

$$7 = s$$

Each edge of the terrarium is 7 feet, so the dimensions of the screen are 7 feet by 7 feet.

an exponent of ? undane by the

Solve $x^3 = 64$.

example 3

Solve Equations Involving Imperfect Squares and Cube

Solve for x.

A.
$$x^2 = 50$$

$$\sqrt{x^2} = \sqrt{50} \quad \cdot$$

$$x = \pm \sqrt{50}$$

Because 50 is not a perfect square, write the solution using the square root symbol.

B.
$$x^3 = 37$$

$$\sqrt[3]{x^3} = \sqrt[3]{37}$$

$$x=\sqrt[3]{37}$$

 $x = \sqrt[3]{37}$ is an exact solution of the equation.

There are two possible solutions, $x = +\sqrt{50}$ and $x = -\sqrt{50}$.

There is one possible solution, $x = \sqrt[3]{37}$.

18 it soup to estimate than sind imperson Try It! Squares to the nearest tenth 1867

a. Solve
$$a^3 = 11$$
.

b. Solve
$$c^2 = 27$$

Dolving Maybrancally
5.43 1,23 X=1.23 X=5.43 [x=5.43]10 X=1.23 10x = \$4.1333 100x = 123.23 - X - 1.23 9x = 48.9 $X = \frac{48.9/10}{9(10)}$ X= 123/99 $\chi = \frac{489}{90}$ qo X=539/90 X=51930

algebraically

$$a^2 = 164$$
 $3x^3 = 3612$

$$0.284-8$$
 $X = 8$

$$b=n0$$
Solution $y=-3$