EXERCISES

Match each equation to its equivalent equation in slope-intercept form.

$$\mathbf{I} \cdot \mathbf{v} + 6 = 3(x+2)$$

A.
$$y = 4x - 2$$

2.
$$y = \frac{1}{2}(x+8) - 2$$

B.
$$y = \frac{1}{2}x + 2$$

3.
$$y + 1 = 1(x - 3)$$

C.
$$y = 3x$$

4.
$$-4x + y = -2$$

D.
$$y = -\frac{1}{2}x + 2$$

5.
$$2x - 4y = -4$$

E.
$$y = x - 4$$

6.
$$2x + 4y = 8$$

F.
$$y = \frac{1}{2}x + 1$$

Convert each equation to slope-intercept form.

7.
$$y + 3 = 4(x + 6)$$

$$8 \times 6x + 2y = 12$$

9.
$$y = -2 + \frac{1}{3}(x+9)$$

10.
$$2x - 5y = -15$$

11.
$$-x - 2y = 2$$

12.
$$y - 1 = -2(x - 5)$$

13.
$$y = \frac{3}{4}(x+12) - 2$$

14.
$$-7x + y = 6$$

15.
$$y + 15 = 4(x + 6)$$

One of the two equations listed in each problem matches the graph. Determine which equation is represented by the graph. Explain how you know your answer is correct.

16.
$$y - 1 = 2(x + 1)$$

OR
 $6x + 3y = 9$

17.
$$6x + 2y = -4$$

OR
 $y = \frac{1}{3}(x - 9) + 1$

REVIEW

Write an equation in slope-intercept form that satisfies the information given about the line.

18. has a slope of $\frac{5}{2}$ and a *y*-intercept of 3

19. has a slope of -3 and goes through the point (3, 1)

20. has a slope of 5 and goes through the origin

21. goes through the points (6, 1) and (10, -1)

22. goes through the points (-2, 5) and (4, 11)

23. has a slope of 0 and a *y*-intercept of -5

24. goes through the points (4, 1) and (4, 9)

25. goes through the points (1, -3) and (2, -6)